Sapphire – Coconino Lapidary Club https://flagstaffmineralandrock.org Explore. Educate. Inspire. Sun, 03 Nov 2024 23:12:20 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.1 https://flagstaffmineralandrock.org/wp-content/uploads/2024/10/rocky-logo-left-1-150x150.png Sapphire – Coconino Lapidary Club https://flagstaffmineralandrock.org 32 32 Sapphire – Art Deco https://flagstaffmineralandrock.org/2020/03/13/sapphire-art-deco/ https://flagstaffmineralandrock.org/2020/03/13/sapphire-art-deco/#respond Fri, 13 Mar 2020 16:36:32 +0000 https://flagstaffrocks.wpmudev.host/?p=23371 Read More

]]>
Art Deco is my favorite style of jewelry with its flair of design and the use of unusual combinations of gemstones.  Art Deco is a style of architecture and design which first appeared in France just before World War I, reaching its high point in the 1925 Paris Exposition of Decorative Arts, and extending into the 1940s.  Today, authentic period jewelry, art objects and reproductions remain esteemed by those who wear and collect it.  In the following gallery I’ve included jewelry and art objects which greatly appeal to me.

SAPPHIRE JEWELRY AND ART WORKS GALLERY

Figure 1.  Art Deco brooch with sapphire cabochon set in an onyx frame with rubies set in gold.  The material on which the gems are mounted is not identified [Ref 1].
Figure 2.  Art Deco sapphire and diamond inlayed silver cigarette case [Ref 2].
Figure 3.  Art Deco diamond and sapphire ring [Ref 3].
Figure 4.  Cuff links with ruby cabochon and sapphire set in white gold with black onyx trimmed stud [Ref 4].
Figure 5.  Art Deco diamond, sapphire, and platinum watch [Ref 5].
Figure 6.  Art Deco tiara with diamonds and sapphires set in white gold [Ref 6].
Figure 7.  Art Deco diamond and sapphire bracelet, circa 1920 [Ref 7].
Figure 8.  Art Deco brooch in Egyptian style set with sapphires, emeralds, and diamonds [Ref 8].
Figure 9.  Diamond brooch set with sapphire accents [Ref 9].
Figure 10.  Art Deco watch with cameos, set with sapphires and diamonds [Ref 10].

REFERENCES

Ref 1.  http://www.doitjewelry.com/02/21/a-beautiful-and-rare-art-deco-brooch-french-circa-1930-centring-a-round-sapphire-cabochon-within-an-onyx-frame-and-further-set-with-calibre-rubies-mounted-in-gold-illegible-makers-mark-6-x-3c-3/

Ref 2.  https://www.rubylane.com/item/821070-RT-4365/Art-Deco-Diamond-Sapphire-800-Silver

Ref 3.  http://www.antiquejewel.com/en/2ndpage.asp?dtn=15033-0048

Ref 4.  https://www.pinterest.com/pin/383861568224232322/

Ref 5.  http://www.macklowegallery.com/search-antiques.asp/currentPage/-1/art-nouveau-antique-estate/art%20deco

Ref 6.  https://www.pinterest.com/pin/368732288212254566/

Ref 7.  https://www.langantiques.com/university/Art_Deco_Era_Jewelry

Ref 8.  http://www.gemscene.com/art-deco.html

Ref 9.  https://www.google.com/search?hl=en&biw=1180&bih=952&tbm=isch&sa=1&ei=4SMEXPngL4LMjgSM7IKgBA&q=sapphire+jewelry+and+art+made+in+art+deco+era&oq=sapphire+jewelry+and+art+made+in+art+deco+era&gs_l=img.12…8687.29358..31068…3.0..0.98.2380.32……0….1..gws-wiz-img.cb574UrAC_k#imgrc=ROK8ATGFQOWIgM:

Ref 10.  http://www.antiquejewel.com/en/2ndpage.asp?dtn=13119-0030

]]>
https://flagstaffmineralandrock.org/2020/03/13/sapphire-art-deco/feed/ 0
Ancient Sapphires https://flagstaffmineralandrock.org/2020/03/06/ancient-sapphires/ https://flagstaffmineralandrock.org/2020/03/06/ancient-sapphires/#respond Fri, 06 Mar 2020 17:34:28 +0000 https://flagstaffrocks.wpmudev.host/?p=22647 Read More

]]>
In this blog I’m displaying examples of jewelry and art objects from ancient Asia and the Mughal Empire.  I also include examples of jewelry from the Roman Empire and the Medieval Victorian Eras in Europe.

ANCIENT ASIAN

Figure 1.  Sapphire and gold finger ring, Central Asian, circa 4th century BC – 1st century AD [Ref 1].
Figure 2.  Various types of beads found in burial grounds dated to 1000 BC in Sri Lanka [Ref 2].
Figure 3.  Turban ornament set with sapphires, emeralds, rubies, 
from the Mughal Empire, created after 1526 [Ref 3, Ref 4].
Figure 4.  White jade scent bottle set with sapphires, rubies, diamonds, and emeralds set in gold, Mughal Empire,18th/19th century [Ref 5].
Figure 5.  Gold turban ornament set with a sapphire
cabochon with other gems of rubies and emeralds, 
Mughal Empire [Ref 6]

ANCIENT ROMAN EMPIRE

Figure 6.  Roman sapphire cameo with gemstone source attributed to Sri Lanka,
1st century AD [Ref 7].
Figure 7.  Roman sapphire and gold ring, Sri Lankan, circa 1st -2rd century AD [Ref 8].
Figure 8.  Roman sapphire in gold earrings.  The other gemstones are not identified [Ref 9].
Figure 9.  Roman sapphire and gold dress pin carved from a single crystal, 
100-130 AD [Ref 10].
Figure 10.  Roman gold bracelet with sapphire, emerald, and glass settings, 375-400 AD [Ref 11].

MEDIEVAL EUROPEAN

Figure 11.  Sapphire and gold ring with beading characteristic of the Viking period, 10th-11th centuries AD [Ref 12].

RENAISSANCE EUROPE

Figure 12.  Brooch set with sapphires, garnets, pearls, and enameled, German, 1359 AD [Ref 13].

Figure 13.  Carved sapphire seal mounted in enameled gold, England, Circa
1580 AD [Ref 14].

VICTORIAN ENGLAND (EUROPE)

Figure 14.  Sapphire, diamond and gold cross, Russia, 1898 [Ref 15].

REFERENCES

Ref 1.  https://onlineonly.christies.com/s/ancient-jewelry-wearable-art/central-asian-gold-sapphire-finger-ring-30/63724

Ref 2.  https://www.internetstones.com/ancient-technology-sri-lankan-gemstone-beads-carvings-cameos-intaglios-carnelian-rock-crystal.html

Ref 3.  http://portobelloantiques.blogspot.com/2010/05/indian-turban-ornament.html

Ref 4.  https://en.wikipedia.org/wiki/Mughal_Empire

Ref 5.  https://www.reenaahluwalia.com/blog/2013/6/20/splendors-of-mughal-india-i

Ref 6.  https://bellatory.com/fashion-accessories/Mughal-Jewelry-Royal-and-antique-jewelry-of-North-India

Ref 7.  https://gem-a.com/news-publications/media-centre/news-blogs/gems-from-gem-a/gem/ancient-sapphires-and-adventures-in-ceylon

Ref 8.  https://medusa-art.com/roman-gold-ring-with-sapphire.html

Ref 9  https://www.google.com/search?q=ancient+roman+sapphire+jewelry&hl=en&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjMy_OcqYTfAhVOEawKHW4EAxkQ_AUIDygC&biw=1236&bih=951#imgrc=BNm3q6dbCiYfDM:

Ref 10.  https://www.pinterest.com/pin/82824080622310428/

Ref 11.  http://www.getty.edu/art/collection/objects/16310/unknown-maker-bracelet-roman-about-ad-379-395/

Ref 12.  http://www.thehistoryblog.com/archives/12180

Ref 13.  https://www.pinterest.com/pin/229050331032972074/

Ref 14.  http://collections.vam.ac.uk/item/O114861/seal-and-case-unknown/

Ref 15.  http://romanovrussia.com/antique/1800s-sapphire-cross/

]]>
https://flagstaffmineralandrock.org/2020/03/06/ancient-sapphires/feed/ 0
Largest Star Sapphire/Ruby https://flagstaffmineralandrock.org/2020/01/26/largest-star-sapphire-ruby/ https://flagstaffmineralandrock.org/2020/01/26/largest-star-sapphire-ruby/#respond Sun, 26 Jan 2020 17:16:52 +0000 https://flagstaffrocks.wpmudev.host/?p=19707 Read More

]]>
We usually think of star sapphires and rubies as stones in the few carat range, not in hundreds and thousands of carats. But some are an amazing size. At the top, are the World’s Largest which are truly awesome. In this blog I’ll describe the worlds largest blue star sapphire, star ruby, and black star sapphire, as well as gems ranking near their size but just below the record. I’ll also include a short history of each gem. 

Worlds Largest Blue Star Sapphire: The Star of Adam [Ref 1, Ref 2]

The world’s largest star sapphire weighs an amazing 1,4O4 carats, and when held, largely occupies the palm of a hand, as shown in Figure 1. 

Figure 1. Star of Adam

The stone was found in the fall of 2015 at mine in the famed alluvial gem deposits near Ratnapura, Sri Lanka [Ref 1 Ref 2]. At first sight, the owner estimated the value of the gem at $175 million. As of January 2016, the owner was pondering whether to auction the gem or to display it. A diligent trip over the internet disclosed no further information about any attempt to auction the gem. However, the gem may have been sold in a private transaction.

World’s Largest Black Star Sapphire: The Black Star of Queensland [Ref 3, Ref 4, Ref 5]

The Black Star of Queensland, as shown in Figure 2, weighs 733 carats, and was the world’s largest sapphire until being displaced by the Star of Adam. This gem is also seen to fill the palm of a hand but does not have the cabochon height of the Star of Adam.

Reportedly, the rough stone was found by a twelve-year old boy, Roy Spencer, in the mid-1930s, in the Reward Claim near Anakie, Queensland, Australia [Ref 3]. The boy’s father, Harry Spencer, assumed it was merely a black crystal and the family used it as a doorstop for over a decade. A second look disclosed the gem.

The stone was sold by Spencer in 1947 to the jeweler Harry Kazanjian for $18,000AU which funded a new house for the family. The subsequent history of the stone has been shared by owners and institutions. The gem was loaned to the Natural History Museum of the Smithsonian Institution in 1969. In 1971 it was seen around Cher’s on television show. To fulfill a childhood dream, the artist and jeweler, Jack Armstrong, and his wealthy girlfriend, Gabrielle Grohe, convinced the Kazanjian family to sell the gem in 2003 [Ref 4]. In 2010 [Ref 5], the pair squabbled over the stone and Armstrong agreed to pay $500,000 for Grohe’s share,  but failed to pay, and due to a judge’s ruling he lost all right to the gemstone. 

Figure 2. Worlds largest black star sapphire [Ref 6].

World’ Largest Star Ruby: the Appalachian Ruby Star [Ref 7]

The Appalachian Ruby Star weighs 139.43 carats and barely edges out the Rosser Reeves Star ruby, that weighs in at 138.72 carats, as shown in Figure 3. The Appalachian Star ruby was cut from a rough ruby, which also yielded three additional stones. The weight of the group of four star rubies became known as the Mountain Star Ruby Collection and is shown in Figure 4. The aggregate weight of the rubies totals 342 carats.

The rough ruby was found in 1990 by Wayne Messer, a fishing guide in Western North Carolina. He had noted traces of corundum in a stream bed and traced the alluvial stones back to their source. Upon digging some eight feet, found the rough ruby. The quartet of star rubies was cut by Sam Fore from the rough stone which weighed 377 carats.

The Appalachian Star ruby was exhibited in 1992 at the Natural history Museum in London, drawing an estimated 150,000 people. Several attempts were made over the years to sell the collection, appraised at a value close to $100 million. Only recently, following the death of Messer, was the collection offered for sale.

Figure 3. The Appalachian Star, World’s Largest Star ruby [Ref 7].


Figure 4. The four star rubies, cut from the large rough ruby which gave the Appalachian Star [Ref 7].

The Rosser Reeves Ruby [Ref 8, Ref 9]

At a weight of 138.7 carats, the Rosser Reeve Ruby is the world’s second heaviest star ruby, and was found in Sri Lanka. The gem is named after Rosser Reeves a pioneer in the advertising industry. Rosser donated the gem to the Smithsonian Institute in 1965. Despite his attractive tale of buying the gem at an auction in Istanbul, he actually bought the gem from Robert C. Nelson Jr.  At purchase, the stone weighed just over 140 carats, but was scratched and so was re-polished, which also helped to re-center the star on the Cabochon. Fortunately for museum goers, this beautiful gem still can be seen at the Smithsonian institute. As a note, the Wikipedia article used as the reference for this segment of the blog was written by Brendan Reeves, great grandson of Rosser.

Figure 5. The Rosser Reeves star ruby [Ref 9].

REFERENCES

Ref 1. https://www.forbes.com/sites/trevornace/2016/01/10/worlds-largest-blue-star-sapphire-found-worth-300-million/#6a06d4f075d1

Ref 2. https://www.mindat.org/loc-3147.html

Ref 3. https://en.wikipedia.org/wiki/Black_Star_of_Queensland#cite_note-5

Ref 4. https://www.upi.com/Feature-Legendary-sapphire-for-sale/10481044491153/

Ref 5. http://articles.latimes.com/2010/jan/05/local/la-me-blacksapphire5-2010jan05/2

Ref 6. https://www.pinterest.com/pin/863987509737025682/

Ref 7. https://www.mnn.com/earth-matters/wilderness-resources/blogs/extremely-rare-star-rubies-found-fishing-guide-could-fetch-millions

Ref 8. https://en.wikipedia.org/wiki/Rosser_Reeves_Ruby

Ref 9. https://geogallery.si.edu/10002811/rosser-reeves-star-ruby

]]>
https://flagstaffmineralandrock.org/2020/01/26/largest-star-sapphire-ruby/feed/ 0
Corundum – From Sapphires to Rubies https://flagstaffmineralandrock.org/2019/11/10/corundum-from-sapphires-to-rubies/ https://flagstaffmineralandrock.org/2019/11/10/corundum-from-sapphires-to-rubies/#respond Sun, 10 Nov 2019 17:08:54 +0000 https://flagstaffrocks.wpmudev.host/?p=12191 Read More

]]>
Gemstones of the mineral corundum [Ref 1] offer a rainbow of colors for the lapidarist and jewelry maker as displayed in Figure 1. 

Traditionally, of these, the ruby and blue sapphire, along with diamond and emerald, are considered to be the four-membered family of precious gems.  Corundum gemstones, other than the ruby and blue sapphire, are also considered sapphires, having colors ranging from green to pink.

In this blog, I’ll describe the crystallography of corundum, and the physical and optical properties of corundum, including the sources of the colors in its gemstones. I will also present a gallery of ruby and sapphire mineral specimens.

Figure 1. A rainbow of the gemstones from corundum: ruby, blue sapphire, and green to pink sapphires.

CRYSTALLOGRAPHY OF CORUNDUM [Ref 1]

Crystal System of Corundum

Corundum crystallizes in the Trigonal System, which has three axes in a plane and are arranged at 120 degrees to each other, with an axis perpendicular to the plane, as shown in Figure 2. Of the typical forms of crystals shown in the figure, corundum frequently crystallizes as a hexagonal prism, terminated by the basal pinacoid; as a bipyramid, the hexagonal prism is terminated by a bipyramid; the rhombehedron and the hexagonal prism are terminated by the rhombehedron, and the schalenohedron. Examples of corundum crystals taking these forms are shown in Figures 5-11. Figure 7 shows a diagram of a crystal exhibiting all of these forms except the rhombohedron and schalenohedron. The latter form is shown by the sapphire crystal in Figure 10.

Figure 2. The four axes of the trigonal crystal system
Figure 3. Properties of the Trigonal Crystal System
Figure 4. Crystal of corundum with typical forms; only the schalenohedron is not shown.

Twinning in Corundum [Ref 1].

Multiple twinning on the rhombohedral plane with laminar structure with striations on both the basal pinacoid perpendicular to the c-axis and the hexagonal prism or on bipyramid faces, as shown by the terminated bipyrimidal sapphire crystal, shown in Figure 10 [Ref 12]. Corundum is also twinned on the hexagonal prism faces of tabular crystals exhibiting an arrowhead shape, as shown by the sapphire specimen in Figure 11[Ref 13]. The view is at the base of the arrowhead shape and pointing towards the tip. Less frequent twinning in corundum occurs on the basal pinacoid, perpendicular to the long axis of the crystal, as showing repetitive twinning along its length in Figure 12. 

The view is at the base of the arrowhead shape and pointing towards the tip. Less frequent twinning in corundum occurs on the basal pinacoid, perpendicular to the long axis of the crystal, as showing repetitive twinning along its length in Figure 12. 

The view is at the base of the arrowhead shape and pointing towards the tip. Less frequent twinning in corundum occurs on the basal pinacoid, perpendicular to the long axis of the crystal, as showing repetitive twinning along its length in Figure 12. 

[metaslider id=”12208″]

MECHANICAL PROPERTIES OF CORUNDUM [Ref 2]

The high values of hardness and ultimate strength and its resistance to cleavage, underlie the toughness of corundum gemstones and their wide usage in rings and bracelets, both susceptible to impact while worn. Values of the strength factors of corundum are summarized in TABLE I.

                      TABLE I. STRENGTH FACTORS OF CORUNDUM GEMSTONES

PROPERTYVALUE/OBSERVATIONREFERENCE
Mohs Hardness SCALE9 (Member of scale)11
Ultimate Compressive Strength435,000 psi13
Ultimate Tensile Strength43,500 psi13
Flexural Strength58, 00013
TenacityBrittle11
FractureIrregular/Uneven,
Conchoidal
11
CleavageNone Observed11

OPTICAL PROPERTIES OF CORUNDUM [Ref 1]

The Refractive Index values of corundum lie in the ranges 1.759-1.772 depending on direction of light polarization. These values are considerably below the value of 2.418 for diamond [Ref 3], and underlies the beauty of corundum gemstones being in their vivid colors and not in brilliance or fire.

The light reflected from the surface, without penetration into gemstones is colorless, as often seen in photographs of gemstones, as in Figure 14.

Light scattering from oriented needle-like crystals of rutile, or to colloidal or other material in oriented tubules is observed in the star sapphire and star ruby as described in another blog on star rubies and sapphires [Ref 4].

Figure 14. Reflections from the surface of the ruby gemstone are colorless, while those reflected from the back of the stone are colored.

SOURCES OF COLOR IN CORUNDUM GEMSTONES

Corundum is aluminum oxide, with the formula Al2O3. Each trivalent aluminum Al3+ ion is surrounded by six oxygen ions, located at the tips of an octahedron in the crystal lattice of corundum, shown in Figure 15. Defects in the forms of ions of metal impurities substituting for the aluminum ion, are responsible for the colors of corundum [Ref 5 ]. The impurity metal ions and the associated colors are summarized in Table I, shown in Figure 4. The divalent and trivalent ions substitute for the aluminum ion in the lattice of the corundum lattice.

Figure 15. Crystal lattice of corundum.
Figure 4. Sources of colors in corundum gemstones. See legend for terms below.

Legend for Figure 4
Cr3+ = Trivalent chromium ion 
Fe3+ = Trivalent iron ion
Fe2+ = Divalent iron ion
Ti4+ = Tetravalent titanium ion
O1-V = neighboring monovalent oxygen ion O1- and lattice vacancy V in lattice
            taking the place of an Al3+ ion.
Al3+ = Trivalent aluminum ion

COLOR CHANGES IN HEAT TREATED SAPPHIRES

Consideration of the various colors in natural sapphires, having different combinations and concentrations of the ions and ion pairs, before and after their heat treatment, serves to demonstrate their effects on color in corundum gemstones. The results of heat treatments are shown in Figures 16-18.

Some sapphires are heat treated to improve the attractiveness of their colors. Studies were carried out to identify changes in concentrations of ions that led to improvements in the aesthetics of the gem stone. The studies showed two major effects in the brown-toned sapphires and in the optical absorption spectrum of sample rO 4/5, red orange. The red trace of the absorption spectrum shows increased absorption due to the chromium ion, a decreased absorption due to trivalent iron ion pairs contributed from paired divalent and trivalent iron ions and single trivalent iron ions. The heat treatment resulted in an increased number of paired divalent iron ions and tetravalent titanium ions. The lessened absorption by iron ions resulted in smaller contributions to the color of the gemstone in the yellow to orange spectral range. Increased trivalent chromium ion concentration resulted in increased absorption of the blue and yellow spectral range and increased transmission in the red spectral range. Increased absorption in the yellow-orange range, due to increased absorption by paired divalent iron and tetravalent titanium ions resulted in increased transmission in the blue spectral range. The lessened transmission in the yellow-orange and increase transmission in the red and blue color ranges resulted in the cherry-pink color of the gemstone.

Figure 16. Ranges of colors in sapphires obtained with heat treatment under reducing conditions, within two temperature ranges.
Figure 17. Samples of sapphires before and after heat treatments at 1100-1700 
Degrees C. Samples before treatment are shown in the top row and after treatment shown in the following rows.
Figure 18. Changes in light absorption and transmission in a sapphire with a red-orange color before treatment and a cherry-pink color achieved after treatment.

GALLERY OF SAPPHIRE AND RUBY SPECIMENS

Many specimens on display are from alluvial deposits where erosion of the edges and faces arose from wear against surrounding gravel and sand.

[metaslider id=”12305″]

Ref 1. https://www.mindat.org/min-1136.html

Ref 2. http://www.matweb.com/search/datasheet_print.aspx?matguid=c8c56ad547ae4cfabad15977bfb537f1

Ref 3.

https://refractiveindex.info/?shelf=3d&book=crystals&page=diamond

Ref 4. https://en.wikipedia.org/wiki/Asterism_(gemology)

Ref 5.

https://www.researchgate.net/publication/273531857_The_Color_Change_of_Natural_Green_Sapphires_by_Heat_Treatment/download

Ref 6.

https://www.degruyter.com/downloadpdf/j/adms.2012.12.issue-2/v10077-012-0006-3/v10077-012-0006-3.pdf

FIGURE REFERENCES

Fig 1. https://www.gia.edu/gia-gem-corundum

Fig  2.

https://commons.wikimedia.org/wiki/File:Quartz_trigonal_crystal_system_showing_four_axes,_a1_%3D_a2_%3D_a3_%E2%89%A0_c..pdf

Fig 3. http://www.orgoneproducts.eu/crystalsystem/trigonal

Fig 4. http://fredmhaynes.com/2016/06/20/july-birthstone-ruby/

Fig 5. https://m.minerals.net/RoughImage/8/25/Ruby.aspx

Fig 6. https://picclick.com/228-Gram-Natural-Ruby-Gemstone-Cab-Cabochon-Carving-372123410110.html

Fig 7.  http://m.palaminerals.com/prilep/

Fig 8. https://www.crystalarium.com/yellow-sapphire-10-gram-1-54-inch-natural-gem-bipyramidal-crystal-sri-lanka.html

Fig 9. https://www.healingcrystals.com/Ruby_-_Ruby_Tabular_Long_Thin___thick_Crystals__Tanzania_.html

Fig 10. http://www.galleries.com/minerals/gemstone/sapphire/sap-11.jpg

Fig 11. https://www.pinterest.com/pin/239394536426945288

Fig 12. https://www.irocks.com/minerals/specimen/45730

Fig 13..  https://www.irocks.com/search?mode=quick&_token=7jNhAkPkfnqEbdEtH9CcBuNzleQUkvCY0myORXb2&query=corundum

Fig 14. https://www.gemsociety.org/article/how-gems-are-identified/

Fig 15.  

https://www.google.com/search?q=crystal+structure+of+corundum&hl=en&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi25riz3rvfAhUCLqwKHVb7DiMQ_AUIDigB&biw=1307&bih=868#imgrc=4Mgsgr9WFGVmeM:

Fig16-18. https://www.degruyter.com/downloadpdf/j/adms.2012.12.issue-2/v10077-012-0006-3/v10077-012-0006-3.pdf

Figure 19.

https://www.google.com/search?q=sapphire+crystals+yogo+gulch+montana&hl=en&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiHmdaL5PzeAhUPKKwKHXSOCLEQ_AUIDigB&biw=1476&bih=930#imgrc=j1lEOC9zjGdpdM:

Fig 20. https://www.mindat.org/photo-7589.html

Fig 21. https://www.spiriferminerals.com/index.php?static=127

Fig 22. http://www.atggems.com/Photos_Mineral1.htm

Fig 23. 

http://www.johnbetts-fineminerals.com/jhbnyc/mineralmuseum/picshow.php?id=39563

Fig 24. https://www.pinterest.com/pin/838443655598552166/

Fig 25.

http://www.johnbetts-fineminerals.com/jhbnyc/mineralmuseum/picshow.php?id=14016

Fig 26. https://www.irocks.com/minerals/specimen/42723

Fig 27. http://www.palagems.com/gem-spectrum-v1-n2/

http://www.johnbetts-fineminerals.com/jhbnyc/mineralmuseum/picshow.php?id=37057

]]>
https://flagstaffmineralandrock.org/2019/11/10/corundum-from-sapphires-to-rubies/feed/ 0