Our Blog


An Unusual Quartz Crystal

While at the Flagstaff Gem, Mineral & Jewelry show this past August, my fellow Coconino Lapidary Club member and collector friend, Gordon, and I spotted an unusual appearing polished quartz crystal. Upon closer inspection we spotted a geometrical array of fine lines within the crystal which looked to be perpendicular to each other. The appearance of the fine lines seemed similar to the line of incomplete cleavage shown in the octahedral diamond crystal. Mindat, [Ref 1]cites quartz as exhibiting cleavage, as well as fracture, (surprising to me upon discovery, as most sources I’ve seen describe quartz as only exhibiting fracturing), I suggested that the fine lines might be due to cleavage. Gordon purchased this crystal, (shown in Figure 1), with the intention of our investigating it to ascertain if the lines were indeed due to cleavage.

The result of our efforts was a yes. The sharp lines we observed were caused by cleavage along rhombohedral planes, as indicated by our measured and calculated angle of 87.5 degrees between the lines, agreeing well with the literature value of 86 degrees.  How we got here is described below, along with how to go about finding demonstrations of cleavage in quartz along other crystallographic planes and how to obtain values for the compressive strength of quartz from the literature.

Description of Cleavage in Quartz

In its description of quartz, Mindat states that quartz fractures exhibiting a conchoidal, (shell-like), surface [Ref 1] and, with respect to cleavage in quartz, that when “The rhombohedral cleavage {10-11} is most often seen, there are at least six others reported.”. This summary led to a web-search resulting in papers which described cleavage occurring in quartz due to shearing along lattice planes, which is due to stresses induced by very high static pressure [Ref 2].

A Cleavage Pattern Under Static Pressure

Fragments of large, single crystals of quartz, which had been embedded in veins located in the basement rocks in Madagascar during the age of the supercontinent, Gondwana, [Ref 3], were used in the study we examined. Separation of India from Madagascar incurred intense pressures and shearing of the basement rocks. Micrographs of thin sections, prepared from the fragments, disclosed two sets of parallel cleavage lines running essentially perpendicularly to each other, as shown in Figure 2 (Figure 2 of Ref 2). Orientation of the thin section by x-Ray diffraction [Ref 4] allowed assignment of cleavage, in both sets of parallel lines, to be directed along rhombohedral planes.

Are the Essentially Perpendicular Lines in the Crystal of Figure 1 Due to Cleavage? 

Comparison of the array of essentially perpendicular cleavage lines, with the two prominent essentially perpendicular lines on the left side of the quartz crystal, in Figure 1, suggested that these lines and others in the crystal might represent cleavage planes. In order to examine this possibility, the angle between the pair of approximately perpendicular lines on the left side of the crystal, were used to obtain a value for the angle between the nearly perpendicular sides. An estimate for the angle was obtained by measuring the lengths of the sides of the resulting right triangle, constructed by erecting a perpendicular to one side and computing the tangent of the included acute angle. This value allowed computation of the arctangent of the angle, giving the computed value of 87.5 degrees, which agrees well with the value of 86 degrees between the rhombohedral (r-r) faces of the drawn crystal shown in Figure 3, (Figure 3 of Reference 5),  [Ref 5]

Cleavage in Quartz Along Other Crystallographic Planes

Having obtained this result, we next researched the web further, looking for quartz crystals which exhibited evidence of cleavage along other possible planes, as given in Table 1 of Reference 5, as shown in Figure 4. Our search, of some duration, resulted in finding the two quartz crystals shown in Figures 5 and 6.

Examination of the crystal in Figure 5 disclosed two suspected cleavage lines in its lower left region. The lines intersect each other, with one being parallel to the axis of the axis parallel to the unit, or secondary prism, of the crystal and the other line intersecting it at an obtuse angle. Calculation of this angle, from measurements on an enlargement of the photo of the crystal, gave a value of 140.6 degrees which agrees closely with the angle between the unit prism and second order trigonal pyramid, (Table, Figure 5), which is shown in Figure 3 as the angle z-m = 142 degrees. In appearance both lines lack the sharpness of those of rhombohedral cleavage. This is probably due to the camera angle in the photo not being perfectly perpendicular to the cleavage lines.

Examination of Figure 6 disclosed four suspected cleavage lines perpendicular to the axis of the prism and one angled at an angle seen in the rhombohedral cleavage in Figure 1. These lines are due to cleavage along the planes parallel to the basal pinacoid (face) of the crystal (Table, Figure 5).These cleavage lines also lack the sharpness of the rhombohedral cleavage lines in Figure 1, probably due to the camera angle. [Ref 6]

Reported Values of the Compressive Strengths of Quartz and Other Silicate Minerals

We found the following references on the web. All gave results obtained at room temperature ~ 72 degrees F. In two experiments, using uniaxial quasi-static (slowly applied force)directed perpendicularly to the prism face, gave values of 2.55 Gigapascals (369,847 psi) [Ref 7] and 2.74 Gigapascals (981,719 psi) [Ref 8], respectively. In two experiments performed to determine the elastic properties of quartz results were obtained with hydrostatic pressures up to 10 GPa ( 1,740,456 psi) and 12GPa (2,088,547 psi), respectively. [Ref 9]

Figure 1. Quartz, State of Minas Gerais, Brazil [Ref 10].
Figure 2. Cleavage along essentially perpendicular sets of rhombohedral planes in quartz [Ref 2].
Figure 3. Angles between quartz faces (or crystal planes) [Ref 3].
Figure 4. Observed planes of cleavage in a quartz crystal [Ref4].
Figure 5. Polished quartz crystal, State of minas Gerais, Brazil.
Figure 6. Polished quartz crystal, State of Minas Gerais, Brazil

Quartzsite Field Trip

Our January field trip to Quartzsite saw perfect weather in the high 60’s, with Snow Birds filling the open desert with their motor-homes.

Linda and I arrived on the 17th as did John and Beth Duggan. Our rock collecting spree began at Desert Gardens, where just about every rock, mineral and gem can be found, for a price. From slabs to cabs to large medium and small rock, Brazilian amethyst cathedrals and large quartz crystal formations. Next stop was the Q.I.A Pow-Wow where more rock and minerals plus jewelry, tools and rock cutting machinery can be had. More slabs and cabs. Indoor display cases were setup, some from dealers showing their wares and some for competition to be judged.

We four made a day of it, with a final stop at Tyson Wells, a huge flee market type fair. Clothing, garden art, tools, household items, beautiful rugs, walking sticks and essential oils, and this list barely begins to cover what is available. As well as the food courts and lots of people perusing the wares.

On Saturday we met at T-Rocks, in order for any members that made the trip from Flagstaff to meet us, sadly none showed up. Maybe next year, with a little more planning and information about where to find accommodations, we’ll have a better turnout.

All in all it was a fun trip, seeing lots of friends from California and Linda and I helping with the American Lands Access Assoc. desert cleanup on Sunday morning. Then, home. It was an fun and exhausting time, but I’m sure we will be back again next year!

Martin & Linda Dougherty

Calcite II – Jewelry & Art

In this blog, art works and jewelry, dating from 2300-2400 BC to the present, are shown. All were discovered with great fun by googling the web.

Figure 1. Carved calcite (travertine) bowl, 4th -mid 5th Dynasty, 2500-2400 BC [Ref 1].
Figure 2. Carved relief calcite disc, Sumerian
2350-2300 BC [Ref 2].
Figure 3. Carved Egyptian Calcite Canopic Jar with human headcover, 17thDynasty,
1570-1085 BC [Ref 3], [Ref 4].
Figure 4. Gold earrings with calcite, cloisonne’ enamel, earthenware, and glass from tomb of Tutankhamun, 18thDynasty, 1336-1327 BC [Ref 5}
Figure 5. Egyptian carved calcite onyx lion holding a vessel, 17thDynasty, 525-404 BC [Ref 6].
Figure 6. Calcite-alabaster stele, South Arabian Peninsula, circa 3rdto 1stCentury BC [Ref 7].
Figure 7. Calcite statue of Roman emperor Hadrian, body from 4thCentury AD, base, head, and hands of gilt bronze from Italy. [Ref 8].
Figure 8. Offering vessel of calcite onyx in form of an ocelot,
Teotihuacan Culture circa 400-600 AD [Ref 9].
Figure 9. Frankish Disk Brooch, gold sheet with inlays of calcite, garnet, and glass,
lets 7th Century AD [Ref 10].
Figure 10. Brooch of sterling silver with Mexican chromian green calcite [Ref 11]
Figure 11. Carved calcite onyx apple [Ref 12].
Figure 12. Calcite and mahogany obsidian necklace [Ref 13].
Figure 13. Blue calcite egg [Ref 14].
Figure 14. Carved blue calcite bowl, Argentina [Ref 15]. 
Figure 15. Pin/Pendant of cobaltoan calcite druzy and faceted gemstones [Ref 16]


Ref 1. https://www.metmuseum.org/art/collection/search/543887?rpp=30&pg=2&gallerynos=103&rndkey=20150416&ao=on&ft=*&pos=55

Ref 2. https://www.penn.museum/collections/object/293415

Ref 3. https://www.dia.org/art/collection/object/canopic-jar-human-head-cover-43587

Ref 4. https://en.wikipedia.org/wiki/Canopic_jar

Ref 5. https://www.pinterest.com/pin/300333868875258132/?lp=true

Ref 6. https://www.brooklynmuseum.org/opencollection/objects/3594

Ref 7. https://www.pinterest.co.uk/pin/386605949244823995/

Ref 8. https://www.mfa.org/collections/object/hadrian-58915

Ref 9. http://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=479257&partId=1

Ref 10. https://www.alamy.com/disk-brooch-late-7th-century-frankish-gold-sheet-with-copper-alloy-backing-and-inlays-of-garnet-glass-and-calcite-overall-2-14-x-1516-in-57-x-24-cm-metalwork-gold-the-dress-of-frankish-women-generally-consisted-of-a-tunic-cinched-by-a-belt-from-which-hung-an-array-of-pendants-a-wrap-or-cloak-went-over-the-tunic-shoes-and-hosiery-fastened-with-buckles-covered-the-legs-image212485417.html

Ref 11. https://www.ebth.com/items/9279883-mexican-made-sterling-silver-calcite-brooch-and-earrings

Ref 12.https://therockshed.com/polishedrock/pr1116a.jpg

Ref 13. http://www.august-veeck.de/jewellery/necklaces/calcite-obsidian/

Ref 14. https://auction.catawiki.com/kavels/10229271-large-blue-calcite-egg-17-x-11-5-cm-3-33-kg

Ref 15. https://fineart.ha.com/itm/lapidary-art/carvings/blue-calcite-bowlandes-mountainsargentinasouth-america/a/5324-72259.s

Ref 16. https://www.pinterest.com/pin/84653667977299238/

Calcite I

Despite its wide distribution in limestone and as a common gangue mineral in ore deposits, the rainbow of colors and beautiful crystal forms of calcite, from locations around the world, have made it a favorite of collectors. One such favorite is the group of calcite crystals, tipped by hematite, from the Egremont Mine shown in Figure 1. In massive form it has provided lapidists and other artisans a beautiful material for the creation of jewelry and other artworks, such as the sculpture done in Utah calcite, shown in Figure 2.

In this blog I will briefly describe the mechanical properties of calcite, its crystallography, optical properties, and sources of its colors. In Calcite II, I will follow with a gallery of calcite specimens sought by collectors from world-wide locations.

Figure 1. Calcite with a partial hematite coating, Egremont Mine,
Cumberaland, England [Ref 1]
Figure 2. Abstract calcite sculpture “Sundance” carved from Utah calcite [Ref 2].

Mechanical Properties [Ref 3]

The hardness of calcite on the Mohs Scale is 3. It’s brittle because of its perfect cleavage along rhombohedral planes. It parts readily, along twin planes formed by stresses. It can also exhibit conchoidal fracture.

Crystallography [Ref 3, 4]

Calcite crystallizes in the Trigonal System with crystallographic axes, and the often-seen rhombohedral, (Left), and scalenohedral, (Right), forms, shown in Figure 1 [Ref 4]. The system possesses three a1,2,3-axes at 120 degrees with respect to each other in the horizontal plane and the perpendicular c-axis. Other crystal forms can be seen in Ref 3.

Any plane through the trigonal lattice is represented by four numbers (hkmi). These are the Miller Indices which are the reciprocal values of the intercepts respectively on the a1, a2, a3, and c-axis. A family of planes is indicated by the notion {hkmi}.

Calcite forms twinned crystals according to four twin laws [Figure 4 in Ref 5] as shown in Figure 2. The twin forms and the associated family of planes are given in Table I. The angles between the vertical c-axes for each twin form are respectively to the nearest degree of 180, 127, 90, and 53. Calcite specimens exhibiting the twin laws are shown in Figures 5-8.

Among minerals calcite can be considered to be the best one to demonstrate cleavage because of its perfect cleavage along the rhombehedral family of planes {10-11}. The rhombehedral shape of the specimen demonstrating birefringence (double refraction) is evident in Figure 10.

Figure 3. Trigonal Crystallographic System [Ref 4]

Figure 4. Four twin laws of calcite shown with scalenohedral forms [Ref 5]

                                             TABLE 1

                        Twin Form                 Family of Twin planes
                               a                                {0001}
                              b                               {10-11}
                               c                               {01-12}
                               d                               {02-21}
Figure 5. Calcite crystal twinned on the basal (0001) plane,
Elmwood Mine, Carthage County, Tennessee [Ref 6].
Figure 6. Calcite crystal twinned on the rhombahedral plane
(10-11) [Ref 7].
Figure 7. Calcite crystal twinned on the pyramidal plane (01-12) location not stated [Ref 8].
Figure 8. Calcite crystal twinned on the pyramidal plane (02-21)
Brushy Creek mine, Reynolds County, Missouri [Ref 9].

Optical Properties 

Calcite exhibits a range of lusters between vitreous to pearly and its transparency ranges between transparent to translucent. Calcite also exhibits birefringence in its refraction of light within the crystal [Ref 3]. Because the refractive index of calcite varies with the direction of light within a calcite crystal the light entering the crystal is doubly refracted into two different directions, as shown schematically in Figure 3 and demonstrated by the double image of the lines seen in Figure 4.

Figure 9. Double refraction in calcite showing two light paths [Ref 10].
Figure 10. Doubly refracted light in a calcite rhombahedron [Ref 11]

Sources of Color in Calcite 

In its description of the properties of calcite, the mineral reference site mindat lists besides white, a rainbow of colors: yellow, red, orange, blue, green, brown, grey, etc. for calcite.

Calcite, which chemically is calcium carbonate with the formula CaCO3, is colorless when pure, as shown by the crystals on matrix shown in Figure 7 [Ref 12].  The rich colors of calcite specimens arise from different sources, such as substitution of low levels of one of the transition metals its divalent ionic form M+2for the calcium ion Ca+2in the lattice of the crystal, low densities of radiation-induced defects in the lattice of the crystal, or inclusions of a pigmented mineral. 

Colors due to transition metal impurity ions [Ref A]

The colors present with iron and chromium, manganese, cobalt, or chromium present in, respectively ferroan, manganoan, cobaltoan, and chromian calcites are summarized in Table II. The yellow, pink and green colors due to these transmission metals can be seen also in many other minerals as can be seen in a search on the Web. 

                                                                        TABLE II

                             MINERAL                               COLOR
                         Ferroan Calcite                               Yellow
                       Cobaltoan Calcite                                 Pink
                     Manganoan Calcite                                 Pink
                        Chromian Calcite                                Green

Colors arising from radiation damage in the crystal lattice 

The search on the web for what colors of calcite might stem from radiation damage disclosed two references in which blue and amber-colored calcite were associated with radiation damage. Results of the study of References suggested that radiation-induced color centers involving the negative ion CO-3and the presence of stress-induced twInning and lattice disloctions account for the coloring mechanism.

The Mineral Spectroscopy Server of the Divisions of Geological and Planetary Sciences of the California Institute of Technology states that natural radiation induces an amber color in the Calcites from the lead-zinc Tri-State Mining District [Ref B, C]

Colors arising from colored inclusions 

Colorful calcite is also produced by the presence of pigmented inclusions. Clear and transparent crystals of calcite, when included by such strongly colored minerals as malachite, pyrite, hematite, native calcite and others, make highly aesthetic specimens. The inclusions may be dispersed in the cystal (Figure 16) or reside on an included phantom crystal within the specimen crystal (Crystal 17).

Calcite, Bigrigg Mine, Egremont area, West Cumberland Mining District, Cumbria, England [Ref 12]
Figure 12. Ferroan calcite, Boral Limited quarry, Bundoora, City of Whittlesea, Victoria, Australia [Ref 13]
Figure 13. Manganoan calcite, 2ndSovietsky Mine, Dal’ngorsk, Far Eastern Russia [Ref 14]
Figure 14. Cobaltoan calcite with green kolwezite, Kambove Mine, Katanga Copper district, Democratic Republic of Congo [Ref 15].
Figure15. Bladed crystals of chromian calcite, Santa Eulalia District, Chihuahua, Mexico [Ref 16].

Color due to an included pigmented mineral 

Figure 16. Calcite with conichalcite inclusions, Mapimi district, Durango, Mexico [Ref 17].
Figure 17. Calcite crystals containing phantom crystals covered with marcasite, Linwood Mine, Buffalo, Scott County, Iowa [Ref 18].

Dec 2018 Trip to Dobell Ranch

Our December 8th field trip to Dobell Ranch began with a chilly morning meet at Silver Saddle Rd. A scant, lucky, seven members ready to scout the open pits and grounds strewn with multi-colored Arizona Petrified Wood.

Our host, Rhonda Dobell and grandchildren, helped by pointing out some of the better material. It was as if we were shopping in a candy store with so many potential specimens to choose from, you ended up having to be very selective as to what you were bringing home. I think we all found what we wanted and then some. We all would like to have the tree trunks decorating our yards, but decided to be reasonable!

Lunch was prepared for all of us and we had fun with the younger grandkids. Then, when everyone was leaving, there were hugs for all around from the kids.

A very successful field trip that I’m sure we will make a repeat visit to, early next year.

Martin & Linda Dougherty

Gold III – Lost Gold Mines in the Southwest

Tales of the discovery and loss of rich gold mines such as The Lost Dutchman in the Superstition Mountains of Arizona and the El Naranjal lost gold mine in the Sierra Mountains of  Mexico, as popularized by folklorist, J. Frank Dobie, in “Apache Gold and Yaqui Silver” have fascinated many of us. An extensive list of both lost gold and silver mines of the Southwest , each with extensive and entertaining descriptions of their histories, can be found in “Lost Treasure Tales” on the GeoZone Site [Ref 1].

Perhaps the lost mine tale that most of us are aware of, is that of the Lost Dutchman Mine [Ref 2]. One, of 62, hand drawn maps of its supposed location, made available in Reference 3, is shown in Figure 1 and orients it with respect to the prominent geological landmark, Weavers Needle, shown in Figure 2.

Figure 1. Map of the location of the Lot Dutchman Gold Mine [Ref 3]

Figure 2. Weavers Needle, the landmark for the location of the Lost Dutchman Gold Mine [Ref 2].

Two roots for the of name of the lost El Naranjal Mine have been attributed to its location near a grove of trees with oranges (naranjas) or to the orange color of the gold in its ore [Ref 3]. It is supposedly located at the bottom of canyon (Barranca) beside a river and near an abandoned hacienda.

Among many of the discussions about this mine, Treasurenet suggests that proof of the its existence lies in an old road sign naming the road to the mine in Sinaloa and in records found in Guadalajara, which were found by a British consul, describing production in the millions in the 17thCentury [Ref 4]. In another posting,

TreasureNet, [Ref 5], suggests its location fits that of an 1800’s lost, and very rich gold mine, in the region of the lost Tayopa silver mine [Ref 6], and in another post [Ref 7] that its location lies in the state of Durango.

Ref 1. http://www.thegeozone.com/treasure/arizona/index.jsp

Ref 2.  http://treasure-hunting-information.com/?page_id=2641

Ref 3. https://en.wikipedia.org/wiki/Naranjal_mine

Ref 4. http://www.treasurenet.com/forums/tayopa/36414-el-naranjal.html

Ref 5. http://www.treasurenet.com/forums/tayopa/273860-can-el-naranjal-possibly-found-tayopa-complex.html

Ref 6. http://www.treasurenet.com/forums/tayopa/36414-el-naranjal.html

Ref 7. http://www.treasurenet.com/forums/treasure-legends/487274-update-mine-el-naranjal.html

November Field Trip to Meteor Crater

November’s club field trip saw 10 members drive out to Arizona’sfamousMeteor Crater participating in a guided tour lasting about an hour.here is a brief description of the Craters history copied fromWikipediafor those that have not visited the Crater.
The crater was created about 50,000 years ago during the Pleistocene epoch when the local climate on the Colorado Plateau was much cooler and damper. The area was an open grassland dotted with woodlands inhabited by woolly mammoths and giant ground sloths.

The object that excavated the crater was a nickel-ironmeteorite about 50 meters, (160feet), across. The speed of the impact has been a subject of some debate. Modeling initially suggested that the meteorite struck at up to 20 kilometers per second, (12 miles per second), but more recent research suggests the impact was substantially slower, at 12.8 kilometers per second, (8.0 miles per second). It is believed that about half of the impactor’s bulk was vaporized during its descent through the atmosphere.

For additional information click on this link to wikipedia.

GOLD II – Artwork

Having greatly enjoyed researching and writing about ancient and recent jewelry in my blog on Garnets (Glorious Garnets) and on silver jewelry in Silver II, I decided to present in this blog, “A Gallery of Ancient Gold Jewelry”, gold coinage and art works from around the world. Despite gold’s tendency to tarnish – its metallic beauty and its workability, stemming from its Mohs softness of 2.5-3, [Ref 1] it has long been a favorite with artisans using techniques such as casting of three-dimensional objects [Ref 2], chasing and repousse’, for the shaping of sheet gold, [Ref 3] and its alloys [Ref 4], and the forming of shapes using filagree and decorating with granulation [Ref 5], as well as the embossing coinage [Ref 6], and as an inlay [Ref 7]. Alloys of gold span the color spectrum offering a palette of colors to the artisan, ranging from purple to red, as well as white. Gold objects fabricated using these techniques comprise this gallery.


Art Work References:

Ref 8. https://www.artsy.net/article/artsy-editorial-history-gold-art-ancient-egyptian-burial-masks-jeff-koons

 Ref 9. https://en.wikipedia.org/wiki/Inca_Empire

 Ref 10. https://masksoftheworld.com/pre-columbian-burial-mask/

Ref 11. https://www.christies.com/lotfinder/Lot/a-gold-and-silver-inlaid-bronze-censer-fangding-5805296-details.aspx

Ref 12. http://new.uniquejapan.com/an-example-of-a-custom-koshirae-with-edo-period-piece-mountings/

Ref 13https://www.pinterest.com/pin/51298883231615583/

 Ref 14https://en.wikipedia.org/wiki/Shakud%C5%8D

Ref 15. https://www.metmuseum.org/art/collection/search/34416

Ref 16. https://en.wikipedia.org/wiki/Shibuichi

September Field Trip to Gray Mountain

September’s field trip was well attended and productive, eight club members departed from the Market at Silver Saddle and State Route 89  for Gray Mountain. Upon our arrival to the area, Andrea Eubanks led the way to our primary collecting site, winding through geologic sandstone formations to a plateau above the Little Colorado River . There we fanned out across a wide area finding  broken pieces of Petrified Wood left behind by a massive flood eon’s ago. Our recent rains helped uncover some cut-able prizes.

Members present, included Andrea, Gordon, Alan, Loewn, John & Beth and Marty & Linda.